Roles of the imprinted gene Igf2 and paternal duplication of distal chromosome 7 in the perinatal abnormalities of androgenetic mouse chimeras.

نویسندگان

  • K J McLaughlin
  • H Kochanowski
  • D Solter
  • G Schwarzkopf
  • P E Szabó
  • J R Mann
چکیده

Mouse chimeras made with androgenetic (two paternal genomes) ova or embryonic stem cells frequently die at the perinatal stage and exhibit a range of defects, the most noticeable being a pronounced overgrowth of rib cartilage. Excess concentrations of IGFII, a potent mitogen, has been suggested to play a major role in these defects, as androgenetic cells possess two active paternal copies of the imprinted Igf2 gene, rather than one inactive maternal and one active paternal copy as in normal cells. Here, we show that chimeras made with androgenetic embryonic stem cells, homozygous for an Igf2 null mutation, do not develop rib cartilage hyperplasia, demonstrating the dependence of this defect on Igf2 activity produced by androgenetic cells. In contrast, in these same chimeras, many other defects, including whole body overgrowth and perinatal death, are still prevalent, indicating that the abnormal expression of one or more imprinted genes, other than Igf2, is also capable of inducing most of the defects of androgenetic chimeras. Many of these genes may reside on distal chromosome 7, as we also show that perinatal chimeras made with embryonic stem cells possessing paternal duplication of distal chromosome 7 exhibit a range of defects similar to those of androgenetic chimeras. The relevance of these findings for the human imprinting-related disorder, Beckwith-Wiedemann syndrome, is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mouse embryos with paternal duplication of an imprinted chromosome 7 region die at midgestation and lack placental spongiotrophoblast.

Imprinted genomic regions have been defined by the production of mice with uniparental inheritance or duplication of homologous chromosome regions. With most of the genome investigated, paternal duplication of only distal chromosomes 7 and 12 results in the lack of offspring, and prenatal lethality is presumed. Aberrant expression of imprinted genes in these two autosomal regions is therefore s...

متن کامل

Igf2r and Igf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting.

Genomic imprinting in mammals is believed to result from modifications to chromosomes during gametogenesis that inactivate the paternal or maternal allele. The genes encoding the insulin-like growth factor type 2 (Igf2) and its receptor (Igf2r) are reciprocally imprinted and expressed from the paternal and maternal genomes, respectively, in the fetal and adult mouse. We find that both genes are...

متن کامل

Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12

The distal portion of mouse chromosome 12 is imprinted. To date, however, Gtl2 is the only imprinted gene identified on chromosome 12. Gtl2 encodes multiple alternatively spliced transcripts with no apparent open reading frame. Using conceptuses with maternal or paternal uniparental disomy for chromosome 12 (UPD12), we found that Gtl2 is expressed from the maternal allele and methylated at the ...

متن کامل

Postnatal Survival of Mice with Maternal Duplication of Distal Chromosome 7 Induced by a Igf2/H19 Imprinting Control Region Lacking Insulator Function

The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some co...

متن کامل

Disruption of mesodermal enhancers for Igf2 in the minute mutant.

The radiation-induced mutation minute (Mnt) in the mouse leads to intrauterine growth retardation with paternal transmission and has been linked to the distal chromosome 7 cluster of imprinted genes. We show that the mutation is an inversion, whose breakpoint distal to H19 disrupts and thus identifies an enhancer for Igf2 expression in skeletal muscle and tongue, and separates the gene from oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 23  شماره 

صفحات  -

تاریخ انتشار 1997